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Abstract

The digitization of Business-to-Business (B2B) commerce, particularly within the specialized ecosystem of the Ger-
man Mittelstand, presents unique predictive challenges that conventional forecasting methodologies fail to address.
Unlike data-rich B2C environments, B2B transactions are characterized by extreme data sparsity, intermittent de-
mand, and complex functional interdependencies between Stock Keeping Units (SKUs). This paper introduces a
novel Foundation Model architecture centered on ALiT (Alignment via Linear Transformation). By shifting
from token-based inductive biases to pattern-based geometric alignment, we demonstrate how Distributional Seman-
tics and Orthogonal Procrustes Analysis can overcome the "Cold Start” problem in sparse datasets. Furthermore,
we provide a critical analysis of current State-of-the-Art architectures, specifically distinguishing our autoregressive
approach from frequency-enriched parallel decoding models (e.g., SAFERec), arguing that the latter fails to capture

the complementary logic essential for industrial baskets.

1 Introduction

The application of Deep Learning to recommender sys-
tems has traditionally been driven by the needs of B2C
giants (e.g., e-commerce, streaming). These environ-
ments are defined by dense user-item interaction ma-
trices and high-frequency consumption. However, the
industrial B2B sector—typified by the German "Hidden
Champions”—operates under a fundamentally different
paradigm.

We identify three critical pathologies in B2B data that
render standard "End-to-End” Deep Learning ineffec-
tive:

1. Extreme Sparsity: An SME may have thousands
of technical SKUs but only a few hundred clients,
making the interaction matrix too sparse for neu-
ral networks to converge on stable embeddings from
random initialization.

2. Disjoint Vocabularies: Unlike Natural Language
Processing (NLP) where the token ”dog” is univer-
sal, B2B identifiers are proprietary. This prevents
traditional Transfer Learning.

3. Functional Complementarity: B2B baskets are
logical assemblies (e.g., a pump and its specific seal),
not merely preferential collections.

1.1 The German Mittelstand Paradox

A pertinent question arises: given the obvious efficiency
gains of Al, why has the German Mittelstand been slow
to adopt these technologies? Research suggests a "Pres-
sure Paradox” [7]. These "Hidden Champions” often
hold near-monopolies in niche hardware markets. This
dominance has historically shielded them from the exis-
tential market pressures that force rapid digital adap-
tation in B2C sectors [8]. Consequently, there is lit-
tle internal pressure to pool data or modernize legacy
ERP systems. Standard AI solutions that require cen-
tralized data lakes are often rejected due to strict data
sovereignty concerns. Our proposed Pattern-Based
Foundation Model addresses this specific barrier by
enabling transfer learning via geometric abstraction, re-
specting the sovereign ”silos” of the Mittelstand while
leveraging collective intelligence.

2 Theoretical Framework

2.1 The Failure of Random Initialization

Standard sequential recommenders, such as SASRec [5],
initialize item embeddings randomly (E ~ N(0,0)) and
rely on Backpropagation to learn semantic proximity. In
B2B settings, where an item may appear in only a hand-
ful of sequences, the gradient signal is too sparse. The
model essentially "memorizes” noise rather than learning
structure, leading to severe overfitting.



2.2 Distributional Semantics & PMI

To solve the sparsity issue, we ground our approach in
the Distributional Hypothesis [1]. Rather than learning
from scratch, we explicitly calculate global corpus statis-
tics using Pointwise Mutual Information (PMI).

Let w be a product and ¢ be a context product in a
basket. The PMI is defined as:

P(w,c)
PMI(w,c) =log Pw)P(d (1)

In industrial contexts, purchasing behaviors drift over
time due to technological obsolescence. Therefore, we
introduce a Time-Decayed Co-occurrence Matrix.
The weight of an interaction between items ¢ and j is
scaled by an exponential decay function:

Wi = Z e A (2)
k

where Aty is the time elapsed since the transaction.
This ensures the model captures the current technologi-
cal landscape rather than historical artifacts.

3 The ALIT Architecture

The core innovation of the proposed Foundation Model
is the ALIiT (Alignment via Linear Transforma-
tion) mechanism. This approach moves beyond ”to-
kens” (which are disjoint across companies) to "patterns”
(which are universal).

Seal A Seal Global
/.\ S
)/ Y. QF (Alignment) )/ N
/ \ % / \
- -% Bolt A ' __ - Bolt Global
- -
Pump A Pump Global

Client A Space Universal Space

Figure 1: Manifold Alignment. Distinct vocabularies
are aligned geometrically. The structural relationship
between a Pump and a Seal is invariant across compa-
nies, allowing transfer learning via rotation 2*.

3.1 Geometric Embedding Construction

We utilize Singular Value Decomposition (SVD) on the
smoothed PMI matrix to generate dense vector represen-
tations.

M~USVT (3)

Crucially, we employ Eigenvalue Weighting (UX°5), cre-
ating a symmetric factorization that balances the rep-
resentation of high-frequency ”head” items and low-
frequency "tail” items.

3.1.1 North Star Attributes

To stabilize the geometry of the embedding space across
different clients, we augment the latent vectors with
Universal Anchors, or "North Star” attributes. These
are statistical properties independent of product iden-
tity:

o Global Popularity (pop): The normalized fre-
quency of the item.

e Re-buy Entropy (H): A measure of the regularity
of purchase intervals.

e Loop Coefficients: The tendency of an item to be
re-ordered immediately.

These scalars are concatenated to the SVD vectors. They
act as "lighthouses” during the alignment process; even if
"Pump A” and "Pump B” have different IDs, their high
popularity and low entropy allow the model to recognize
them as functionally equivalent nodes in the manifold.

3.2 The Point Alignment Head

A full Procrustes alignment requires matching all points
A to B. In a live inference setting, this is computa-
tionally expensive and noisy. We introduce the Point
Alignment Head based on the ”Sensor Hypothesis.”
Instead of aligning the entire catalog, we sample a small,
statistically representative subset of items (the ”Sensor,”
S C A). A lightweight attention mechanism computes
the optimal rotation matrix T  based solely on this sensor:

T = Attention(Ssensor) (4)

This allows the model to orient a new client’s dataset
in milliseconds, effectively "snapping” their proprietary
data into the universal orientation of the Foundation
Model.
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Figure 2: System Architecture. The pipeline decou-
ples structural learning (PMI/SVD) from dynamic learn-
ing (Transformer). The Alignment Layer uses a ”Sen-
sor” sample to project proprietary data into the univer-
sal space.



4 The Transformer Paradigm:
Attention without Representa-
tion

The seminal paper ”Attention is All You Need” [4] in-
troduced the Self-Attention mechanism:

-
Attention(Q, K, V) = softmax (Ci/[c%c ) vV (5

In standard implementations, the model must simultane-
ously learn the representation of the items (the embed-
dings) and the dynamics of their interaction (the weights
Wq, Wk, Wy ). Our architecture fundamentally alters
this contract. By fixing the item representations via
ALiT (which are already semantically rich due to SVD),
the Transformer is relieved of the burden of representa-
tion learning. It focuses exclusively on sequence dynam-
ics. This explains why our model converges on sparse
B2B data where others fail: the "geometry” of the prod-
ucts is pre-calculated using rigorous algebra (SVD), not
learned via stochastic gradient descent. The Transformer
effectively acts as a ”physics engine,” learning the uni-
versal laws of how industrial baskets evolve, while the
ALIT layer ensures the ”objects” in the simulation are
correctly defined.

5 Sequence Modeling & Inference

5.1 Autoregressive vs. Parallel Decoding

A critical distinction of our architecture is the adherence
to Autoregressive Inference for basket generation.
Recent State-of-the-Art models, such as SAFERec [6],
employ parallel decoding to maximize inference speed.
SAFERec calculates probabilities for all items simulta-
neously:

P(Basket|History) =~ H P(i|History) (6)

i€ Basket

This assumes conditional independence between items in
the target basket. While effective for grocery recom-
mendations, this is catastrophic for industrial B2B. In
B2B, items are complements. If a "Drill Body” is se-
lected, the probability of ”Drill Bit” must increase, and
the probability of a rival "Drill Body” must decrease.
Our model generates baskets sequentially:

P(itlit—1, ..., 50, History) (7)

This ensures that the predicted basket is a coherent tech-
nical assembly, not a list of redundant substitutes.

5.2 Hard Constraints & Frequency

To further enforce logical consistency, the inference en-
gine applies hard constraints during beam search to pre-
vent the repetition of capital goods within a single bas-
ket, while allowing high-frequency consumables (bolts,

lubricants) based on their learned entropy in the ALiT
embedding space.

6 Conclusion

This whitepaper outlined a custom Al Foundation Model
designed specifically for the data realities of the B2B sec-
tor. By combining Time-Decayed PMI with Orthogonal
Procrustes Alignment, we solve the cold-start problem
inherent in sparse industrial datasets. Furthermore, our
critique of parallel decoding models like SAFERec high-
lights the necessity of autoregressive coherence in techni-
cal procurement. This architecture provides a scalable,
privacy-preserving pathway for German SMEs to lever-
age collective industrial intelligence.
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